

Distilling Cross-Task Knowledge via Relationship Matching

Han-Jia Ye, Su Lu, De-Chuan Zhan

Nanjing University

Highlights

We propose REFILLED approach to distill knowledge from a **cross-task teacher** trained on non-overlapping classes. We emphasize that the comparison ability between *instances* is an essential factor to relate two domains. State-of-the-art experimental results under 3 settings.

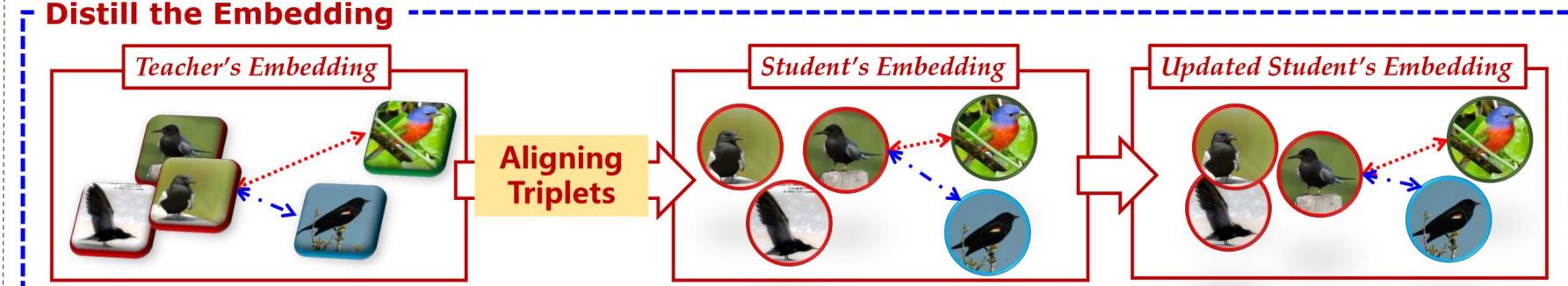
Deep Networks for Classification

- Input: training dataset $\mathcal{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N$ where $\mathbf{x}_i \in \mathbf{x}_i$ \mathbb{R}^D and $\mathbf{y}_i \in \{0,1\}^C$.
- Objective: $\min_{i=1} \sum_{i=1}^{N} \ell(f(\mathbf{x}_i), \mathbf{y}_i)$ where $\ell(\cdot, \cdot)$ is a loss function such as cross-entropy.
- Output: a deep network $f(x): \mathbb{R}^D \mapsto \{0,1\}^C$ which can be decomposed into a feature extractor $\phi : \mathbb{R}^D \mapsto$ \mathbb{R}^d and a linear classifier $W \in \mathbb{R}^{d \times C}$.

Knowledge Distillation

Aside from training dataset, an extra model welltrained on the same task f_T (a.k.a teacher) is given. • Distill "dark knowledge" from f_T to improve the training efficacy of f_{S} (a.k.a student). • Let $s_{\tau}(f(\mathbf{x}_i)) = softmax(f(\mathbf{x}_i)/\tau)$, we solve $\min_{f_S} \sum_{i=1}^N \ell(f_S(\mathbf{x}_i), \mathbf{y}_i) + \lambda \mathcal{R}(s_\tau(f_T(\mathbf{x}_i), s_\tau(f_S(\mathbf{x}_i)))),$ where $\mathcal{R}(\cdot, \cdot)$ measures the difference between two distributions, e.g., Kullback-Leibler divergence.

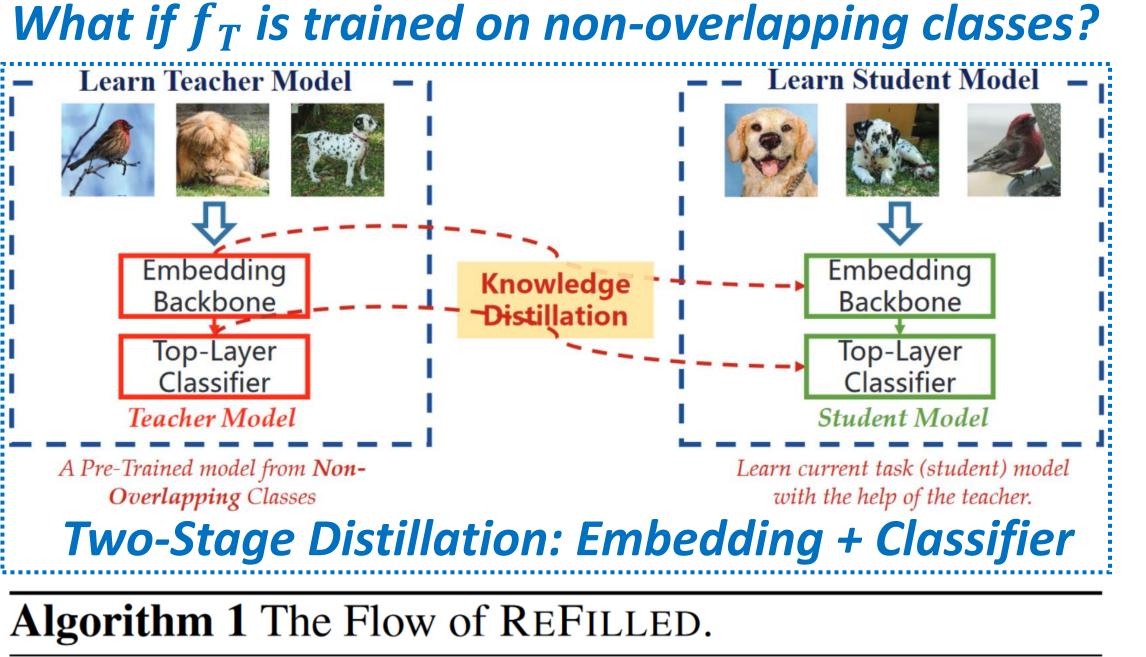
Distill the Embedding



Main Idea: Triplet Alignment by Stochastic Triplet Probability

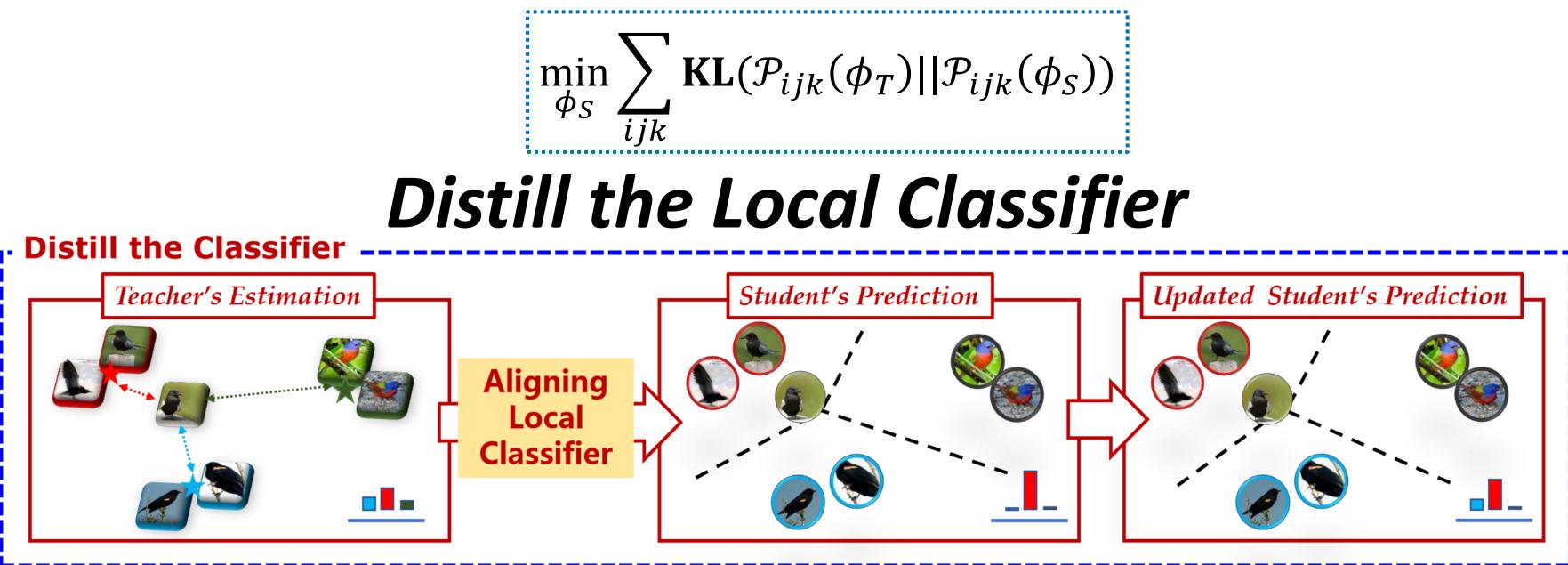
- A triplet $(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k)$ contains an anchor \mathbf{x}_i , its neighbor \mathbf{x}_i , and its impostor \mathbf{x}_k .
- Based on embedding ϕ , the stochastic triplet probability encodes how much the anchor is closer to its target neighbor than its impostor.

$$p_{ijk}(\phi) = \frac{\exp(-\text{Dist}_{\phi}(\mathbf{x}_{i}, \mathbf{x}_{j})/\tau)}{\exp(-\text{Dist}_{\phi}(\mathbf{x}_{i}, \mathbf{x}_{j})/\tau) + \exp(-\text{Dist}_{\phi}(\mathbf{x}_{i}, \mathbf{x}_{k})/\tau)}$$
$$\text{Dist}_{\phi}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \left\|\phi(\mathbf{x}_{i}) - \phi(\mathbf{x}_{j})\right\|_{2}$$



Require: Pre-trained Teacher's Embedding ϕ_T . **Distill the Embedding:**

- Construct a Bernoulli distribution $\mathcal{P}_{ijk}(\phi) = [p_{ijk}(\phi), 1 p_{ijk}(\phi)].$
- Minimize the KL-divergence between $\mathcal{P}_{ijk}(\phi_T)$ and $\mathcal{P}_{ijk}(\phi_S)$ over generated triplets.



Main Idea: Distillation from Mini-Batch Nearest Class Mean Classifier

• We construct an embedding based local classifier. Denote $X \in \mathbb{R}^{N \times D}$ and $Y \in \{0,1\}^{N \times C}$ as the instances and one-hot labels in a sampled mini-batch. We compute the embedding center of each class as P, where \oslash denotes element-wise division.

$P = \operatorname{diag}(\mathbf{1} \oslash (Y^T \mathbf{1})) Y^T \phi_T(X) \in \mathbb{R}^{C \times d}$

The label of an instance in the batch can be determined by teacher model:

- for all Iter = 1,...,MaxIter do
 - Sample a mini-batch $\{(\mathbf{x}_i, \mathbf{y}_i)\}$.
 - Generate triplets $\{(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k)\}$ with student's embeddings $\{\phi_S(\mathbf{x})\}$.
- Compute probability of triplets $p_{ijk}(\phi_T)$ as Eq. 4.
- Optimizing ϕ_S by aligning triplets in Eq. 5.

end for

Distill the Classifier:

Initialize f_S with ϕ_S .

Optimizing f_S with Eq. 9.

State-of-the-art results **Cross-Task Knowledge Distillation**

- Dataset: CUB-200 split into two parts
- Model: MobileNet with different channels

	Easy			Hard				
Channel	1	0.75	0.5	0.25	1	0.75	0.5	0.25
Teacher Student	1NN: 4 70.04	49.23, LF 68.13	R: 56.77, 66.44	FT: 66.94 64.63	1NN: 4 71.25	45.31, LF 67.56	R: 53.82, 66.85	FT: 65.72 64.48
RKD [<mark>13</mark>] Vanilla LKD	71.10 71.62 71.93	68.81 70.27 70.73	67.15 70.15 70.88	64.28 66.75 67.41	70.83 71.90 72.53	68.8 69.14 70.01	67.44 68.91 69.50	63.97 65.38 66.42
REFILLED	72.48	71.04	71.35	67.87	73.38	70.42	69.77	67.10

$p_{\phi_T}(\mathbf{y}_i | \mathbf{x}_i) = \text{softmax}(-\|\phi_T(\mathbf{x}_i) - \mathbf{p}_c\|_2^2 / \tau), c = 1, ..., C$

• Knowledge distillation on classes in the sampled mini-batch rather than all C classes.

$$\min_{f_S} \sum_{i=1}^N \ell(f_S(\mathbf{x}_i), \mathbf{y}_i) + \lambda KL(p_{\phi_T}(\mathbf{y}_i | \mathbf{x}_i) | |s_\tau(f_S(\mathbf{x}_i))$$

Standard Knowledge Distillation

(depth, width)	(40, 2)	(16, 2)	(40, 1)	(16, 1)	
Teacher	74.44				
Student	74.44	70.15	68.97	65.44	
KD [20]	75.47	71.87	70.46	66.54	
FitNet [43]	74.29	70.89	68.66	65.38	
AT [67]	74.76	71.06	69.85	65.31	
NST [23]	74.81	71.19	68.00	64.95	
VID-I [2]	75.25	73.31	71.51	66.32	
KD+VID-I [2]	76.11	73.69	72.16	67.19	
RKD [38]	76.62	72.56	72.18	65.22	
REFILLED	77.49	74.01	72.72	67.56	
CIFAR-100, WideResNet -> WideResNet					

idth Multiplier	1	0.75	0.5	0.25
Teacher	75.36			

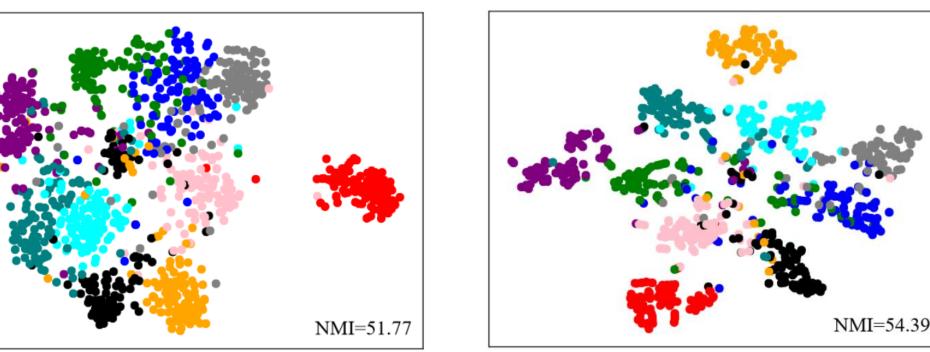
74.87

76.02

72.41 69.72

72.03

74.24



First Stage (Embedding Stage) Helps

Second Stage (Classifier Stage) Helps

1.75 - 1.50 - 1.25 - 1.00 - 1.00 - 0.75 - 0.00 - 0.25 - 0.00 -		20 40 number of Midc	60 80 classes	of classe grows, t norm di	ed when (D loss.
Task	S	1-Shot 5-Way	5-Shot 5-Way	10-Shot 5-Way	30-Shot 5-Way
1NN	1	49.73	63.11	66.56	69.80
SVM	1	51.61	69.17	74.24	77.87
Fine-Tune		45.89	68.61	74.95	78.62
MAML	, [3]	48.70	63.11	_	-
ProtoNet [20]		51.79	70.38	74.42	78.10
FEAT [26]	55.15	71.61	74.86	78.84
REFILL	ED ¹	54.82	71.97	76.42	80.33
REFILL	ED^2	53.44	70.60	75.37	78.94

- **REFILLED** outperforms several baseline methods and some other comparison methods.
- **1NN: Nearest Neighbor using teacher model**
- LR: Logistic Regression using teacher model
- FT: Fine-tuning the teacher model

75.10 75.03 72.17 69.09 FitNet [43] 76.22 AT [67] 76.10 73.70 70.74 NST [23] 76.91 77.05 71.54 74.03 77.03 KD+VID-I [2] 76.91 72.23 75.62 77.72 74.99 72.55 76.80 RKD [38] 78.95 76.11 73.42 REFILLED 78.01 CUB-200, MobileNet -> MobileNet **REFILLED** works well in standard knowledge distillation and middleshot learning.

75.36

77.61

Student

KD [20]

REFILLED1: ResNet backbone; REFILLED2: ConvNet backbone

We propose REFILLED, a cross-task knowledge distillation method by reusing the comparison ability of teacher model, which works well in cross-task KD, standard KD, and middle-shot learning. Code: https://github.com/njulus/REFILLED